周六. 7 月 19th, 2025

原标题:在线学术报告 | 伍书缘:大规模分布式学习的拟牛顿更新

摘要

Distributed computing is critically important for modern statistical analysis. Herein, we develop a distributed quasi-Newton (DQN) framework with excellent statistical, computation, and communication efficiency. In the DQN method, no Hessian matrix inversion or communication is needed. This considerably reduces the computation and communication complexity of the proposed method. Notably, related existing methods only analyze numerical convergence and require a diverging number of iterations to converge. However, we investigate the statistical properties of the DQN method and theoretically demonstrate that the resulting estimator is statistically efficient over a small number of iterations under mild conditions. Extensive numerical analyses demonstrate the finite sample performance.

伍书缘,北京大学光华管理学院商务统计与经济计量系在读博士生,师从王汉生教授。主要研究方向为再抽样方法、统计优化算法、大规模数据统计建模等。研究论文发表在Journal of Business and Economic Statistics, Statistica Sinica, Journal of the Royal Statistical Society. Series C等期刊上。

线ying.chang@clubear.org

请添加熊二(clubear2)获取参会方式~ 返回搜狐,查看更多

责任编辑:

Avatar photo

作者 UU 13723417500

友情提示:现在网络诈骗很多,做跨境电商小心被骗。此号发布内容皆为转载自其它媒体或企业宣传文章,相关信息仅为传递更多信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实其内容的真实性。---无意冒犯,如有侵权请联系13723417500删除!

声明本文由该作者发布,如有侵权请联系删除。内容不代表本平台立场!

发表回复

服务平台
跨境人脉通
选品平台
U选Market
展会&沙龙
群通天下